Prevalence of Non-lipschitz Anosov Foliations

نویسنده

  • BORIS HASSELBLATT
چکیده

We give sharp regularity results for the invariant subbundles of hyperbolic dynamical systems and give open dense sets of codimension one systems where this regularity is not exceeded as well as open dense sets of symplectic, geodesic, and codimension one systems where the analogous regularity results of [PSW] are optimal. We produce open sets of symplectic Anosov diffeomorphisms and flows with low transverse Hölder regularity of the invariant foliations almost everywhere. Prevalence of low regularity of conjugacies on large sets is a corollary. We also establish a new connection between the transverse regularity of foliations and their tangent subbundles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Infinite sequence of fixed point free pseudo-Anosov homeomorphisms

We construct an infinite sequence of pseudo-Anosov homeomorphisms without fixed points and leaving invariant a sequence of orientable measured foliations on the same topological surface and the same stratum of the space of Abelian differentials. The existence of such a sequence shows that all pseudo-Anosov homeomorphisms fixing orientable measured foliations cannot be obtained by the Rauzy-Veec...

متن کامل

-pinched Anosov Diffeomorphism and Rigidity

Let / be a C°° Anosov diffeomorphism of a compact man-ifold M, preserving a smooth measure. If / satisfies the |-pinching assumption defined below, it must preserve a continuous affine connection for which the leaves of the Anosov foliations are totally geodesic, geodesically complete, and flat (its tangential curvature is defined along individual leaves). If this connection, which is the uniqu...

متن کامل

Tight contact structures and Anosov flows

In this review, we demonstrate how classic and contemporary results on the classification of tight contact structures apply to the problem of existence and uniqueness of Anosov flows on three-manifolds. The ingredients we use are the results of Mitsumatsu on Anosov flows, the homotopy invariant of plane fields as described by Gompf and others, and certain recent classification results of Giroux...

متن کامل

Pseudo-anosov Foliations on Periodic Surfaces

In this note we shall study the lifts of stable foliations of pseudo-Anosov diffeomorphism to certain infinite abelian covers. This is motivated, at least in part, by recent progress in understanding the ergodic properties of the analogous horocycle flows on infinite surfaces [3],[13]. Our aim is to show that many of the results from that context hold in this natural and technically simpler set...

متن کامل

Lipschitz Distributions and Anosov Flows

We show that if a distribution is locally spanned by Lipschitz vector fields and is involutive a.e., then it is uniquely integrable giving rise to a Lipschitz foliation with leaves of class C1,Lip. As a consequence, we show that every codimension-one Anosov flow on a compact manifold of dimension > 3 such that the sum of its strong distributions is Lipschitz, admits a global cross section. The ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1997